Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

4-Hydroxy-1-methyl-2-oxo- N -(4-oxo-2-propyl-3,4-dihydroquinazolin-3-yl)-1,2-dihydroquinoline-3-carboxamide

S. V. Shishkina, ${ }^{\text {a }}{ }^{*}$ O. V. Shishkin, ${ }^{\text {a }}$ I. V. Ukrainets, ${ }^{\text {b }}$ N. A. Jaradat $^{\text {b }}$ and O. V. Gorokhova ${ }^{\text {b }}$

${ }^{\text {a }}$ Scientific Research Department of Alkali Halide Crystals, STC 'Institute for Single Crystals', National Academy of Sciences of Ukraine, 60 Lenina Ave., Khar'kov 310001, Ukraine, and ${ }^{\text {b }}$ Department of Organic Chemistry, Ukrainian Pharmaceutical Academy, 21 Blyukhera Ave., Khar'kov 310002, Ukraine
Correspondence e-mail: sveta@xray.isc.kharkov.com

Received 28 February 2000
Accepted 10 March 2000

Data validation number: IUC0000074
The two bicyclic fragments of the title compound, $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}$, are individually planar and are turned with respect to each other by $77.8(2)^{\circ}$. The formation of intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds causes considerable changes in the bond lengths within the amidopyridine fragment.

Comment

In the present paper, we report the results of an investigation of the molecular and crystal structures of the (2-propyl-4-oxoquinazoline-3-yl)amide of 1-methyl-4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylic acid, (I), which may be used as efficient anti-inflammatory remedies (Ukrainets et al., 1993, 1994). Both bicyclic fragments of the molecule are planar. The amide group $\mathrm{O} 3=\mathrm{C} 10-\mathrm{N} 2$ lies in the plane of the pyridine ring [the $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 10-\mathrm{N} 2$ torsion angle is $2.8(2)^{\circ}$]. This is caused by formation of $\mathrm{O} 2-\mathrm{H} 2 \mathrm{O} \cdots \mathrm{O} 3$ and $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O} 1$ hydrogen bonds $[\mathrm{H} 2 \mathrm{O} \cdots \mathrm{O} 31.73(4) \AA, \mathrm{O} 2-\mathrm{H} 2 \mathrm{O} \cdots \mathrm{O} 3$ $151(4)^{\circ}$; H2N \cdots O1 1.83 (3) Å, N2-H2N \cdots O 140 (2) ${ }^{\circ}$. Two planar fragments are turned with respect to each other [the $\mathrm{C} 10-\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 18$ torsion angle is $\left.-77.8(2)^{\circ}\right]$. The propyl substituent at the C 11 atom and the $\mathrm{C} 11-\mathrm{N} 4$ bond have an $s p$ orientation [the $\mathrm{N} 4-\mathrm{C} 11-\mathrm{C} 20-\mathrm{C} 21$ torsion angle is $\left.-0.4(2)^{\circ}\right]$. Such an arrangement of the alkyl group, apparently, results from repulsion between the H atoms of the propyl substituent and the amide fragment. This assumption is confirmed by the presence of the shortened intramolecular contacts $\mathrm{H} 20 A \cdots \mathrm{~N} 22.60 \AA$ and $\mathrm{H} 20 B \cdots \mathrm{~N} 22.61 \AA$ (van der Waals radii sum is $2.66 \AA$; Zefirov \& Zorky, 1995). The formation of the intramolecular hydrogen bonds causes change of bond lengths within the amidopyridine fragment. Similar changes in the bond lengths were observed in the related structure 3-benzoyl-1-ethyl-4-hydroxy-2-quinolone
(Borowiec et al., 1996). This effect may be explained by some contribution of the enole resonance form into the total structure of molecule.

(I)

Experimental

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}$
$M_{r}=404.42$
Monoclinic, $P 2_{\mathrm{a}_{1}} / c$
$D_{x}=1.378 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 24
$a=12.474$ (3) \AA
reflections
$b=15.213$ (4) \AA
$\theta=10-11^{\circ}$
$c=10.684$ (3) \AA
$\mu=0.097 \mathrm{~mm}^{-1}$
$\beta=105.95$ (3) ${ }^{\circ}$
$V=1949.4(9) \AA^{3}$
$T=293$ (2) K
$Z=4$
Needle, yellow
$0.40 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Siemens $P 3 / P C$ diffractometer
$h=-17 \rightarrow 16$
$q / 2 q$ scans
$k=-21 \rightarrow 0$
5749 measured reflections
5477 independent reflections
3031 reflections with $I>2 \sigma(I)$
$l=0 \rightarrow 15$
2 standard reflections every 98 reflections
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=30.08^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1328 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$w R\left(F^{2}\right)=0.190$
$(\Delta / \sigma)_{\text {max }}<0.001$
$S=0.955$
5477 reflections
$\Delta \rho_{\max }=0.30 \mathrm{e}^{-3}$
351 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters (\AA).

O1-C1	$1.244(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.448(2)$
O2-C3	$1.326(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.382(2)$
O3-C10	$1.2385(19)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.435(2)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H2O $\cdots \mathrm{O} 3$	$0.83(4)$	$1.72(4)$	$2.500(2)$	$155(3)$
N2-H2N $\cdots \mathrm{O} 1$	$0.90(3)$	$1.82(3)$	$2.567(2)$	$139(2)$

All H atoms were located and their positional parameters were allowed to refine. The $\mathrm{C}-\mathrm{H}$ distances are in the range 0.90 (2)1.06 (5) \AA, and $\mathrm{N}-\mathrm{H}=0.90$ (3) \AA and $\mathrm{O}-\mathrm{H}=0.83$ (3) \AA

Data collection: P3/PC (Siemens, 1989); cell refinement: P3/PC; data reduction: XDISK (Siemens, 1991); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

References

Borowiec, H., Grochowski, J. \& Serda, P. (1996). Khim. Geterosikl. Soedin. pp. 248-251. (In Russian.)
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1989). P3. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.
Siemens (1991). XDISK. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.
Ukrainets, I. V., Gorokhova, O. V., Taran, S. G. \& Turov, A. V. (1994). Khim. Geterosikl. Soedin. pp. 1211-1213. (In Russian.)
Ukrainets, I. V., Taran, S. G., Evtifeeva, O. A. \& Turov, A. V. (1993). Khim. Geterosikl. Soedin. pp. 938-940. (In Russian.)
Zefirov, Yu. V. \& Zorky, P. M. (1995). Usp. Khim. 64, 446-460. (In Russian.)

