electronic papers

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

4-Hydroxy-1-methyl-2-oxo-*N*-(4-oxo-2-propyl-3,4-dihydroquinazolin-3-yl)-1,2-dihydroquinoline-3-carboxamide

S. V. Shishkina,^a* O. V. Shishkin,^a I. V. Ukrainets,^b N. A. Jaradat^b and O. V. Gorokhova^b

^aScientific Research Department of Alkali Halide Crystals, STC 'Institute for Single Crystals', National Academy of Sciences of Ukraine, 60 Lenina Ave., Khar'kov 310001, Ukraine, and ^bDepartment of Organic Chemistry, Ukrainian Pharmaceutical Academy, 21 Blyukhera Ave., Khar'kov 310002, Ukraine Correspondence e-mail: sveta@xray.isc.kharkov.com

Received 28 February 2000 Accepted 10 March 2000

Data validation number: IUC0000074

The two bicyclic fragments of the title compound, $C_{22}H_{20}N_4O_4$, are individually planar and are turned with respect to each other by 77.8 (2)°. The formation of intramolecular $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds causes considerable changes in the bond lengths within the amidopyridine fragment.

Comment

In the present paper, we report the results of an investigation of the molecular and crystal structures of the (2-propyl-4oxoquinazoline-3-yl)amide of 1-methyl-4-hydroxy-2-oxo-1,2dihydroquinoline-3-carboxylic acid, (I), which may be used as efficient anti-inflammatory remedies (Ukrainets et al., 1993, 1994). Both bicyclic fragments of the molecule are planar. The amide group O3=C10-N2 lies in the plane of the pyridine ring [the C1-C2-C10-N2 torsion angle is 2.8 (2) $^{\circ}$]. This is caused by formation of O2-H2O···O3 and N2-H2N···O1 hydrogen bonds [H2O···O3 1.73 (4) Å, O2–H2O···O3 $151 (4)^{\circ}; H2N \cdots O1 1.83 (3) \text{ Å}, N2 - H2N \cdots O1 140 (2)^{\circ}].$ Two planar fragments are turned with respect to each other [the C10-N2-N3-C18 torsion angle is $-77.8 (2)^{\circ}$]. The propyl substituent at the C11 atom and the C11–N4 bond have an sp orientation [the N4-C11-C20-C21 torsion angle is $-0.4 (2)^{\circ}$]. Such an arrangement of the alkyl group, apparently, results from repulsion between the H atoms of the propyl substituent and the amide fragment. This assumption is confirmed by the presence of the shortened intramolecular contacts H20 $A \cdot \cdot \cdot$ N2 2.60 Å and H20 $B \cdot \cdot \cdot$ N2 2.61 Å (van der Waals radii sum is 2.66 Å; Zefirov & Zorky, 1995). The formation of the intramolecular hydrogen bonds causes change of bond lengths within the amidopyridine fragment. Similar changes in the bond lengths were observed in the related structure 3-benzoyl-1-ethyl-4-hydroxy-2-quinolone

(Borowiec *et al.*, 1996). This effect may be explained by some contribution of the enole resonance form into the total structure of molecule.

 $D_x = 1.378 \text{ Mg m}^{-3}$

Cell parameters from 24

 $0.40\,\times\,0.20\,\times\,0.10$ mm

2 standard reflections

every 98 reflections

intensity decay: 5%

 $w = 1/[\sigma^2(F_o^2) + (0.1328P)^2]$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$

where $P = (F_o^2 + 2F_c^2)/3$

Mo $K\alpha$ radiation

reflections

 $\mu = 0.097 \text{ mm}^{-1}$

T = 293 (2) K

Needle, yellow

 $h=-17 \rightarrow 16$

 $k = -21 \rightarrow 0$

 $l = 0 \rightarrow 15$

 $\theta = 10 - 11^{\circ}$

Experimental

Crystal data $C_{22}H_{20}N_4O_4$ $M_r = 404.42$ Monoclinic, $P2_1/c$ a = 12.474 (3) Å b = 15.213 (4) Å c = 10.684 (3) Å $\beta = 105.95$ (3)° V = 1949.4 (9) Å³ Z = 4

Data collection

Siemens P3/PC diffractometer q/2q scans 5749 measured reflections 5477 independent reflections 3031 reflections with $I > 2\sigma(I)$ $R_{int} = 0.016$ $\theta_{max} = 30.08^{\circ}$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.064$ $wR(F^2) = 0.190$ S = 0.9555477 reflections 351 parameters

H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å).

01-C1	1.244 (2)	C1-C2	1.448 (2)
O2-C3	1.326 (2)	C2-C3	1.382 (2)
O3-C10	1.2385 (19)	C3-C4	1.435 (2)

Table 2

Hydrogen-bonding geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$02-H2O\cdots O3$ $N2-H2N\cdots O1$	0.83 (4)	1.72 (4)	2.500 (2)	155 (3)
	0.90 (3)	1.82 (3)	2.567 (2)	139 (2)

All H atoms were located and their positional parameters were allowed to refine. The C-H distances are in the range 0.90 (2)–1.06 (5) Å, and N-H = 0.90 (3) Å and O-H = 0.83 (3) Å

Data collection: *P3/PC* (Siemens, 1989); cell refinement: *P3/PC*; data reduction: *XDISK* (Siemens, 1991); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXL*97; software used to prepare material for publication: *SHELXL*97.

References

- Borowiec, H., Grochowski, J. & Serda, P. (1996). *Khim. Geterosikl. Soedin.* pp. 248–251. (In Russian.)
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Siemens (1989). P3. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.
- Siemens (1991). XDISK. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.
- Ukrainets, I. V., Gorokhova, O. V., Taran, S. G. & Turov, A. V. (1994). *Khim. Geterosikl. Soedin.* pp. 1211–1213. (In Russian.)
- Ukrainets, I. V., Taran, S. G., Evtifeeva, O. A. & Turov, A. V. (1993). *Khim. Geterosikl. Soedin.* pp. 938–940. (In Russian.)
- Zefirov, Yu. V. & Zorky, P. M. (1995). Usp. Khim. 64, 446-460. (In Russian.)